节点文献

改进遗传神经网络在甘蔗产量预测中的应用

The Application on the Sugar Cane Forecast with the Neural Networks Using Improved Genetic Algorithms

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 徐永春张森文

【Author】 XU Yong-chun1,2,ZHANG Sen-wen3 ( 1 College of Engineering,South China Agricultual Univevsity,Guangzhou 510642,China; 2 Department of Computer,Guangdong Polytechnic Institute,Guangzhou 510091,China; 3 Applied Mechnical Institute,Jinan University,Guangzhou 510632,China)

【机构】 华南农业大学工程学院广东理工职业学院计算机系暨南大学应用力学研究所

【摘要】 传统甘蔗产量预测方法对外界多因素关联作用的农作物产量预测的难度大、精度差、准确度低,本文提出改进自适应交叉和变异算子的遗传BP算法,多元逐步回归简化BP网络的输入变量,应用改进的遗传BP算法策略,并以甘蔗产量实例数据进行了验证和分析,结果表明,改进的遗传BP算法总体效果最优.

【Abstract】 The features of traditional method on sugar cane production forecast were discussed,and an improved intelligence genetic algorthms (GA) strategy and a method of simplified input variables by the multiple stepwise regression are presented,which can avoid the shortage of trained BP and enhance the BP model learning efficiency on the sugarcane data.An improved GABP model was simulated and verified in the forecast example of sugarcane data.

【关键词】 改进遗传算法BP网络甘蔗预测
【Key words】 improved genetic algorithmBP networksugar caneforecast
  • 【文献出处】 华南农业大学学报 ,Journal of South China Agricultural University , 编辑部邮箱 ,2010年03期
  • 【分类号】S566.1;TP183
  • 【被引频次】11
  • 【下载频次】201
节点文献中: 

本文链接的文献网络图示:

本文的引文网络