节点文献

裂纹扩展过程模拟的无网格MSLS方法

SIMULATION OF CRACK GROWTH BY THE MSLS METHOD

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 蔡永昌朱合华

【Author】 CAI Yong-chang1,2 , ZHU He-hua1 (1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, P.R.China; 2. Key Laboratory for the Exploitation of Southwest Resources and Environmental Disaster Control Engineering, Ministry of Education, Chongqing 400044, China)

【机构】 同济大学岩土及地下工程教育部重点实验室,地下建筑与工程系重庆大学西南资源开发及环境灾害控制工程教育部重点实验室

【摘要】 采用一种新提出的无网格MSLS方法来进行裂纹扩展过程的模拟分析,该方法的插值函数具有Kronecker delta属性,能够方便准确地施加本质边界条件,且其计算和求导过程相对滑动最小二乘(MLS)插值更为简单,克服了其它无网格方法的一些主要困难,适合于裂纹扩展等网格畸变和网格移动等问题的分析模拟。该文中采用围线积分法计算裂纹的应力强度因子,用最大周向应力理论来建立复合裂纹的断裂准则,数值算例表明了该文理论和方法的正确性与可行性。

【Abstract】 A newly proposed Meshless Shepard and Least Square (MSLS) interpolation has been employed for the simulation of crack growth. The MSLS shape function possesses the much desired Kronecker delta property. Thus the essential boundary conditions can be treated as easily as they are in Finite Element Method (FEM). The construction and derivation of the MSLS interpolation are also simpler than that of the Moving Least Square (MLS) approximation. This MSLS method overcomes the main difficulties of other meshless methods and is well-suited for the analysis of crack propagations. In this work, the contour integral method has been used to compute the mixed-mode stress intensity factors. The crack propagation angle is determined by the criterion of maximum stress in the tangential direction. Several numerical examples are presented to verify the validity and accuracy of the present method.

【关键词】 裂纹扩展无网格无单元Shepard函数MSLSMLS
【Key words】 crack growthmeshlesselement freeshepard functionMSLSMLS
【基金】 国家自然科学基金项目(50579093);教育部科学技术研究重点项目(107041)
  • 【文献出处】 工程力学 ,Engineering Mechanics , 编辑部邮箱 ,2010年07期
  • 【分类号】O346.1
  • 【被引频次】22
  • 【下载频次】410
节点文献中: 

本文链接的文献网络图示:

本文的引文网络