节点文献

配电系统电压跌落状态估计中的不良数据辨识

Bad Data Identification in Voltage Sag State Estimation of Distribution System

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张国辉王宾潘贞存高鹏

【Author】 ZHANG Guo-hui1,WANG Bin2,PAN Zhen-cun3,GAO Peng4 (1.Shandong Electrical Power Research Institute,Jinan 250002,Shandong Province,China;2.State Key Lab of Control and Simulation of Power Systems and Generation Equipments (Tsinghua University),Haidian District,Beijing 100084,China;3.College of Electrical Engineering,Shandong University,Jinan 250061,Shandong Province,China;4.Zibo Electrical Power Company,Zibo 255000,Shandong Province,China)

【机构】 山东电力研究院电力系统及发电设备安全控制和仿真国家重点实验室(清华大学)山东大学电气工程学院淄博供电公司

【摘要】 SSE(sag state estimation)算法是一种用于电压跌落状态估计的二阶曲线拟合算法,其精度受监测数据精度影响严重,若监测关键点存在不良数据会导致整个配电网电压跌落状态的估计错误。基于此,提出了电压跌落状态估计不良数据检测算法,并构造了修正不良数据的数学模型。算例结果证明,该算法能够有效识别不良数据,提高电压跌落状态估计精度。

【Abstract】 Sag state estimation (SSE) algorithm is a second-order curve fitting algorithm for voltage sag state estimation and the accuracy of state estimation is seriously affected by the accuracy of monitoring data,so the voltage sag state estimation will be wrong if there were bad data in the monitoring data of key point.For this reason,a detection algorithm for bad data in voltage sag state estimation is proposed and a mathematical model to modify bad data is constructed.Results of calculation example show that the proposed algorithm can effectively identify bad data,so the accuracy of voltage sag state estimation can be improved.

【基金】 北京市自然科学基金资助项目(3102017)
  • 【文献出处】 电网技术 ,Power System Technology , 编辑部邮箱 ,2010年08期
  • 【分类号】TM642
  • 【被引频次】11
  • 【下载频次】358
节点文献中: 

本文链接的文献网络图示:

本文的引文网络