节点文献
奇异二阶微分系统离散周期边值问题的多重正解
Multiplicity of positive solutions to second order singular discrete periodic boundary value problems of dierential systems
【摘要】 研究了奇异二阶微分系统离散周期边值问题的多重正解的存在性,证明了在适当的条件下这个问题至少存在两个正解.其一的存在性通过运用非线性Leray-Schauder抉择定理得到;其二的存在性通过Krasnoselskiz锥不动点定理得到.
【Abstract】 This paper is devoted to establish the multiplicity of positive solutions to second-order singular discrete periodic boundary value problems of dierential systems.It is proved that such a problem has at least two positive solutions under this reasonable conditions.The existence of the first solution is obtained by using a nonlinear alternative of Leray-Schauder,and the second one is found by using a Krasnoselskii fixed point theorem in cones.
【关键词】 奇异;
周期边值问题;
正解;
Leray-Schauder抉择;
锥不动点定理;
【Key words】 singular; periodic boundary value problem; positive solution; Leray-Schauder alternative; fixed point theorem in cones;
【Key words】 singular; periodic boundary value problem; positive solution; Leray-Schauder alternative; fixed point theorem in cones;
【基金】 国家自然科学基金资助项目(10971021)
- 【文献出处】 东北师大学报(自然科学版) ,Journal of Northeast Normal University(Natural Science Edition) , 编辑部邮箱 ,2010年03期
- 【分类号】O175.8
- 【下载频次】40