节点文献

多智能体代理下电力双边谈判中的模糊贝叶斯学习模型

A Fuzzy Bayesian Learning Model in Agent-based Electric Power Bilateral Negotiation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 谭忠富李莉王建军姜海洋王成文

【Author】 TAN Zhong-fu,LI Li,WANG Jian-jun,JIANG Hai-yang,WANG Cheng-wen (School of Business Administration,North China Electric Power University,Changping District,Beijing 102206,China)

【机构】 华北电力大学工商管理学院

【摘要】 在基于多智能体(multi-Agent)代理技术的电力双边谈判中,提高Agent的环境自调节能力对提高谈判效率有着重要意义。该文通过将贝叶斯学习模型引入到基于Agent环境下的电力双边谈判中来赋予Agent学习的能力,使其能够根据动态环境调整自我认识,从而达到提高谈判效率的目的。与此同时,考虑到谈判环境的模糊不确定性,分别运用模糊集和模糊概率理论构建Agent的模糊贝叶斯学习模型,并给出在这种环境下Agent的点报价策略和区间报价策略。最后结合算例证明,谈判双方在都采取模糊贝叶斯学习情况下的谈判效率要比一方或双方都不采取贝叶斯学习情况下的谈判效率要高,而双方采取区间报价策略能有效缩减谈判时间,为决策者提供了更有弹性的决策空间。

【Abstract】 In Agent-based electric power bilateral negotiation,it is important to enhance the Agent’s ability to adjust according to the environment so as to improve the negotiation efficiency.By introducing Bayesian learning to Agent-based electric power bilateral negotiation,the Agent was empowered the ability to learn according to a dynamic environment and adjust itself,so that the efficiency of the negotiation was improved.At the same time,taking into account the fuzzy uncertainties of the negotiating environment,the fuzzy set and fuzzy probability theories were used to construct an Agent Fuzzy Bayesian learning model,and then its point bidding strategy and interval bidding strategy were designed.Finally,an example was given to prove that the negotiation where both the negotiators adopt fuzzy Bayesian learning is more efficient than the negotiation where neither or only one negotiator adopt fuzzy Bayesian learning.And the interval bidding strategy can save more time for negotiators,so it is more suitable for time-limited negotiation.

【基金】 国家自然科学基金项目(70571023)。~~
  • 【文献出处】 中国电机工程学报 ,Proceedings of the CSEE , 编辑部邮箱 ,2009年07期
  • 【分类号】TP18;F407.61
  • 【被引频次】24
  • 【下载频次】764
节点文献中: 

本文链接的文献网络图示:

本文的引文网络