节点文献

多参数结构特征二阶灵敏度

Second-Order Sensitivity of Eigenpairs of Multiple Parameter Structures

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈塑寰郭睿孟广伟

【Author】 CHEN Su-huan1, GUO Rui2, MENG Guang-wei1(1.College of Mechanical Science and Engineering,Nanling Campus, Jilin University,Changchun 130025, P.R.China;2.State Key Laboratory of Automobile Dynamic Simulation,Nanling Campus,Jilin University,Changchun 130025, P.R.China)

【机构】 吉林大学(南岭校区)力学系吉林大学(南岭校区)汽车动态模拟国家重点实验室

【摘要】 提出了一种有效计算多参数结构特征值与特征向量二阶灵敏度矩阵——Hessian矩阵的方法.将特征值和特征向量二阶摄动法转变为多参数形式,推导出二阶摄动灵敏度矩阵,由此得到特征值和特征向量的二阶估计式.该法解决了无法用直接求导法计算特征值和特征向量二阶灵敏度矩阵的问题.数值算例说明了该算法的应用和计算精度.

【Abstract】 A method for computing the second-order sensitivity matrix of eigenvalues and eigenvectors of the multiple parameter structures,i.e.the Hessian matrix,was presented. The second-order perturbations of eigenvalues and eigenvectors were transformed into the multiple parameter forms, and the second-order perturbation sensitivity matrices of eigenvalues and eigenvectors were developed. Using these formulations, the efficient methods based on the second-order Taylor expansion and second-order perturbation were obtained to estimate the changes of eigenvalues and eigenvectors when design parameters changed. The method avoided direct differential operation thus reducing the difficulty for computing the second-order sensitivity matrices of eigenpairs. A numerical example was given to demonstrate the application and the accuracy of the proposed methods.

【基金】 吉林省科学技术发展基金资助项目(20070541)
  • 【文献出处】 应用数学和力学 ,Applied Mathematics and Mechanics , 编辑部邮箱 ,2009年12期
  • 【分类号】O302
  • 【被引频次】2
  • 【下载频次】206
节点文献中: 

本文链接的文献网络图示:

本文的引文网络