节点文献
仿真环境下随机性VRP的序贯优化策略研究
Sequential Optimization Strategy of SVRP under Simulation
【摘要】 通过融合机会约束优化策略与序贯决策方法,提出了机会约束序贯优化策略。该策略在优化随机性VRP的决策中不但可以利用计算机的优化计算能力,而且可以将决策人的经验和偏好融入其中,这种人为参与的决策可以成功地解决随机性VRP的决策问题,避免了马尔科夫决策过程中存在的维数灾难问题。通过仿真模型对该策略的实验表明随机性VRP的序贯优化策略优于其它策略。
【Abstract】 By merging the chance constraint optimization strategy and the sequential optimization strategy, the Chance Constraint Sequential Optimization Strategy was proposed. The strategy, utilizing both the capacity of computer optimization and human intelligence of the decision maker, could solve the SVRP successfully and avoid the difficulty in Markov Decision Programming. The simulation results show that the strategy is superior to others in solving SVRP.
【关键词】 序贯决策;
机会约束;
随机性车辆路径问题;
仿真优化;
【Key words】 sequential decision processes; chance constraint; SVRP; simulation & optimization;
【Key words】 sequential decision processes; chance constraint; SVRP; simulation & optimization;
【基金】 国家自然科学基金NSFC(70271011);国家教育基金(20020006-4)
- 【文献出处】 系统仿真学报 ,Journal of System Simulation , 编辑部邮箱 ,2009年14期
- 【分类号】TP391.9
- 【被引频次】10
- 【下载频次】177