节点文献

基于案例推理的纺纱质量预测模型研究

Case-based Reasoning Model for Quality Prediction of Spinning Yarn

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 韩江洪刘小平杜兆芳毕翔陆阳

【Author】 HAN Jiang-hong1,2,LIU Xiao-ping1,DU Zhao-fang1,3,BI Xiang1,2,LU Yang1,2(1.School of Computer and Information,Hefei University of Technology,Hefei 230009,China;2.Engineering Research Center of Safety Critical Industrial Measurement and Control Technology,Ministry of Education,Hefei 230009,China;3.Anhui Agricultural University,Hefei 230036,China)

【机构】 合肥工业大学计算机与信息学院教育部安全关键工业测控技术工程研究中心安徽农业大学

【摘要】 针对纺织企业的纱线质量控制问题,提出了基于案例推理(CBR)的纱线质量预测模型。利用纺织企业纱线生产中积累的历史数据构建案例库,采用聚类算法为其建立索引结构。在此基础上,使用最近邻法分两步检索出相似案例,并对相似案例进行修改以获得预测值,同时采取主动学习策略保存当前案例,更新案例库。最后使用纺纱生产的实际数据进行仿真,得到具有较高精度的预测结果,验证了模型的有效性。

【Abstract】 According to the problem of yarn quality control in a textile enterprise,a case-based reasoning(CBR) model for predicting yarn quality was proposed.The historical data of spinning production accumulated in a textile enterprise were used to build case base,while a clustering algorithm was selected to create indexical structure.Based on the structure,the nearest neighbor method was used to search similar cases,which were modified to become the predictive values.Then this new case was reserved on an active learning strategy and case base was refreshed.Finally,the simulation was implemented by the actual data in spinning production.The more precise predictive results prove the effectiveness of this model.

【基金】 国家自然科学基金项目(60873003);教育部博士点基金项目(20050359004)
  • 【文献出处】 系统仿真学报 ,Journal of System Simulation , 编辑部邮箱 ,2009年05期
  • 【分类号】TP18
  • 【被引频次】20
  • 【下载频次】325
节点文献中: 

本文链接的文献网络图示:

本文的引文网络