节点文献
大型复杂系统故障隔离智能优化策略
Large-scale Complex System Fault Isolation Intelligent Optimal Strategy
【摘要】 大型复杂系统的故障隔离是系统维修的重要环节,现有的故障隔离算法存在平均故障隔离时间(MFIT)长,不能快速自动生成决策树等缺点。利用AO*算法自动构造决策树,将离散粒子群算法应用于AO*算法的每一个节点的测试选择,降低计算复杂度,使故障隔离策略智能化。实例表明:该算法将故障隔离时间缩短20%,并降低测试代价,提高故障隔离效率,为大型复杂系统故障隔离提供一种高效算法。
【Abstract】 Fault isolation (FI) of Large-scale complex system is an important part of system maintenance. Long mean fault isolation time (MFIT) and being incapable of quickly automatic building of FI decision-making tree are the disadvantages of existing methods. The AO* algorithm builds the decision-making tree automatically; discrete binary particle swarm optimization algorithm applied to the test node selection reduces the complexity and intelligent FI strategy. The example validates that this algorithm has shortened 20% MFIT, decreased the test cost and improved the efficiency of FI. It offers an efficiency algorithm to the fault isolation of large-scale complex system.
【Key words】 fault isolation; mean fault isolation time; discrete binary particle swarm optimization algorithm; AO*;
- 【文献出处】 系统仿真学报 ,Journal of System Simulation , 编辑部邮箱 ,2009年03期
- 【分类号】TN02
- 【被引频次】15
- 【下载频次】431