节点文献

考虑吸附和降解时溶质在土壤中运移的对流-弥散模型及其准解析解

Quasi-analytical solution for advection-dispersion model of solute transport through soils under steady state flow

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张德生张建丰沈冰

【Author】 ZHANG De-sheng a,ZHANG Jian-feng b,SHEN Bing b(a.The Faculty of Sciences,b.The Faculty of Water Resources and Hydraulic Power,Xi’an University of Technology,Xi’an,Shaanxi 710048,China)

【机构】 西安理工大学理学院西安理工大学水利水电学院

【摘要】 【目的】了解吸附性溶质在土壤中的运移规律,为土壤溶质运移机理研究和应用提供理论支持。【方法】利用溶质运移的对流-弥散理论、Laplace变换、超几何方程和特征有限元法,对溶质在土壤中的运移规律进行理论研究和数值模拟。【结果】给出了稳定流条件下,考虑随深度变化的一阶降解和随深度变化的线性平衡吸附时,一维溶质运移的对流-弥散方程;在初始浓度为0,半无限一维空间内第一类边界条件下,推导出了溶质相对浓度的准解析表达式;用特征有限元法建立了相应的数值模型。【结论】对比数值解和准解析解的计算数据可以看出,本研究所得准解析解是正确的;同时,数值计算所产生的误差很小,所得数值模型能满足实际工作对计算精度的要求,可用于实际工作。

【Abstract】 【Objective】 The study was to find the transport law of adsorbed solute in soils and to provide theoretical basis for mechanism research and applications of solute transport through soils.【Method】 The advection-dispersion theory,Laplace transform,hypergeometric equation and the characteristic finite element method were used for theory research and numerical simulation.【Result】 The advection-dispersion model of 1-D solute transport through soils with depth-dependent first-order degradation and depth-dependent linear equilibrium Absorption under steady state flow was studied,and a quasi-analytical solution describing the concentration distribution was deduced under the initial concentration zero and the first boundary condition of a semi-infinite 1-D space.The numerical model of the advection-dispersion model was constructed by the characteristic finite element method.【Conclusion】 It can be seen from comparing the numerical solutions to the quasi-analytical solutions that the quasi-analytical solution is right and errors caused by the numerical computation are so small that the numerical model perfectly meets the demand of calculating precision in practical work.

【基金】 国家自然科学基金项目(50779055;50779052)
  • 【文献出处】 西北农林科技大学学报(自然科学版) ,Journal of Northwest A & F University(Natural Science Edition) , 编辑部邮箱 ,2009年03期
  • 【分类号】X131.3
  • 【被引频次】6
  • 【下载频次】663
节点文献中: 

本文链接的文献网络图示:

本文的引文网络