节点文献

基于遗传算法的BOD神经网络软测量

NN Soft-Measuring for BOD Predict Based on GA

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 田奕乔俊飞

【Author】 TIAN Yi1,2,QIAO Jun-fei1(1.School of Electronic Information & Control Engineering,Beijing Univ.of Tech.,Beijing 100022,China;2.Department of Electronic & Information Science Engineering,North China Institute of Science and Technology,Beijing 101601,China)

【机构】 北京工业大学电子信息与控制工程学院华北科技学院电子信息工程系

【摘要】 针对污水处理过程中关键水质参数无法在线监测的问题,提出基于遗传算法和BP神经网络相结合的污水水质软测量方法,该方法采用遗传算法优化神经网络结构和权、阈值分布,再用BP算法对神经网络进行训练,得到最优的建模网络。仿真结果表明该方法可以避免单独使用BP网络容易陷入局部最小的问题,并能加快全局收敛速度,对水质参数BOD(生化需氧量)预测实时性好、稳定性高、精度高,可用于污水水质的在线预测。

【Abstract】 Considering that on-line information of some essential wastewater parameters is inaccessible in monitoring and controlling wastewater treatment processes,a soft-measuring technique applied to wastewater quality measurement is put forward based on genetic algorithm(GA) and BP neural networks.This method applies genetic algorithm to optimize structure,weights and thresholds of the neural network,then uses BP algorithm to train the neural network in order to get to the superior network.The simulation results show that the new method can avoid getting into the part minimum problem caused by using BP neural network alone and accelerate the overall converging speed.This model,which is of good real-time property,good stability and high precision,can be applied to on-line predict wastewater BOD.

【基金】 国家自然科学基金(60674066)
  • 【文献出处】 计算机技术与发展 ,Computer Technology and Development , 编辑部邮箱 ,2009年03期
  • 【分类号】TP183
  • 【被引频次】28
  • 【下载频次】343
节点文献中: 

本文链接的文献网络图示:

本文的引文网络