节点文献

小波与BP网络在发动机配气系统故障诊断中的应用研究

Application of wavelet and BP neural-net in fault diagnosis of engine gases distributing system

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 袁静徐玉秀乔国栋

【Author】 YUAN Jing1,XU Yu-xiu2,QIAO Guo-dong2 (1. School of Mechanical and Engineering,Shenyang Polytechnic University,Shenyang 110024,China;2. School of Mechanical and Electronic Engineering,Tianjin Polytechnic University,Tianjin 300160,China)

【机构】 沈阳工业大学机械学院天津工业大学机械电子学院

【摘要】 对柴油机表面振动加速度信号进行检测,经时频分析、小波分析提取信号的特征量,并将其作为BP神经网络的输入端,用神经网络方法对故障信号的冲击类型进行分类和诊断.分析表明,发动机多故障的冲击为进气门异常状态、排气门异常状态和爆燃冲击状态,这与实测的发动机运行状态完全一致.由此证实基于小波和神经网络相结合的分析方法能准确地识别发动机多故障状态的冲击类型,准确区分正常状态、故障状态及故障类型.

【Abstract】 The surface acceleration vibration signals of diesel engine are tested. The signal characteristic parameters are extracted through time-frequency analysis and wavelet analysis,and acted as the input of neural-net to classify and diagnose the impact styles of fault signals. The analysis results show that multi-fault impact signals of engine are inlet valve fault,outlet valve fault and deflagration impact,which is consistent with the fact. It makes sure that the method combining wavelet with neural-net can identify multi-fault impact styles of engine,and distinguish normal and fault state.

【基金】 天津市应用基础及前沿重点项目(09JCZDJC24300)
  • 【文献出处】 天津工业大学学报 ,Journal of Tianjin Polytechnic University , 编辑部邮箱 ,2009年04期
  • 【分类号】TK428
  • 【被引频次】4
  • 【下载频次】86
节点文献中: 

本文链接的文献网络图示:

本文的引文网络