节点文献

A NOTE ON CONVOLUTION-TYPE CALDERóN-ZYGMUND OPERATORS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨占英杨奇祥

【Author】 Yang Zhanying 1,2 Yang Qixiang 1 1.College of Mathematics and Statistics, Wuhan University, Wuhan 430072, China 2.College of Computer Science, South-Central University for Nationalities, Wuhan 430074, China

【机构】 College of Mathematics and Statistics, Wuhan UniversityCollege of Computer Science, South-Central University for Nationalities

【摘要】 For convolution-type Calderón-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that Hrmander condition can ensure the boundedness on Triebel-Lizorkin spaces ■ p 0 ,q(1 < p, q < ∞) and on a party of endpoint spaces ■1 0 ,q(1 ≤ q ≤ 2), but this idea is invalid for endpoint Triebel-Lizorkin spaces ■1 0 ,q(2 < q ≤∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on ■1 0 ,q(2 < q ≤∞) under an integrable condition which approaches Hrmander condition infinitely.

【Abstract】 For convolution-type Calderón-Zygmund operators, by the boundedness on Besov spaces and Hardy spaces, applying interpolation theory and duality, it is known that Hrmander condition can ensure the boundedness on Triebel-Lizorkin spaces ■ p 0 ,q(1 < p, q < ∞) and on a party of endpoint spaces ■1 0 ,q(1 ≤ q ≤ 2), but this idea is invalid for endpoint Triebel-Lizorkin spaces ■1 0 ,q(2 < q ≤ ∞). In this article, the authors apply wavelets and interpolation theory to establish the boundedness on ■1 0 ,q(2 < q ≤ ∞) under an integrable condition which approaches Hrmander condition infinitely.

【基金】 Sponsored by the NSF of South-Central University for Nationalities (YZZ08004);the Doctoral programme foundation of National Education Ministry of China
  • 【文献出处】 Acta Mathematica Scientia ,数学物理学报(英文版) , 编辑部邮箱 ,2009年05期
  • 【分类号】O177
  • 【被引频次】4
  • 【下载频次】13
节点文献中: 

本文链接的文献网络图示:

本文的引文网络