节点文献

融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用

Application of Markov Chain Monte Carlo method based modified generalized likelihood uncertainty estimation to hydrological models

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 卫晓婧熊立华万民刘攀

【Author】 WEI Xiao-jing,XIONG Li-hua,WAN Min,LIU Pan(Wuhan University,Wuhan 430072,China)

【机构】 武汉大学水资源与水电工程科学国家重点实验室

【摘要】 本文在Blasone研究工作的基础上,进一步提出了基于马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法(Markov Chain-Monte Carlo based Modified Generalized Likelihood Uncertainty Estimation,MMGLUE)。该方法结合近年来被广泛用于推求参数后验分布的MCMC方法,对基于Monte Carlo随机取样方法的传统GLUE方法进行改进,并以预测区间性质最优为标准,对可行参数组阈值进行判断与选择,提出了衡量预测区间对称性的标准,并就预测区间性质与可行参数组个数的相关关系进行了探索。在汉江玉带河流域的实例研究证明,MMGLUE方法较传统的GLUE方法能够推求出性质更为优良的预测区间,从而更真实合理地反映水文模型的不确定性。

【Abstract】 A modified generalized likelihood uncertainty estimation(GLUE)based on Markov Chain Monte Carlo(MCMC)method for regional hydrological model is suggested.The method uses the Markkov Chain Monte Carlo for sampling rather than the Monte Carlo random sampling to infer the posterior probability distribution and selects the behavior parameters threshold according to the property of prediction interval.Then,the relationship between the properties of predicted interval and the threshold for choosing behavior parameters are explored.The criteria of describing the prediction interval symmetry are also proposed.The application to the Yudaihe River watershed demonstrates that the proposed modified GLUE,comparing with the original GLUE,can derive more accurate prediction bounds and more proper estimation of the uncertainty in hydrological model.

【基金】 国家自然科学基金重点项目(40730632);教育部新世纪优秀人才支持计划(NCET-05-0624);霍英东青年教师基金资助项目(101077)
  • 【文献出处】 水利学报 ,Journal of Hydraulic Engineering , 编辑部邮箱 ,2009年04期
  • 【分类号】P333.9
  • 【被引频次】77
  • 【下载频次】1968
节点文献中: 

本文链接的文献网络图示:

本文的引文网络