节点文献

基于动态主元分析的财务困境预测模型

A Dynamic Principal Component Analysis Based Financial Distress Prediction Model

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李凡军李颖

【Author】 LI Fan-Jun1,LI Ying2(1.School of Sciences,Jinan University,Jinan 250022,China;2.Shandong Institute of Light Industry,Jinan 250353,China)

【机构】 济南大学理学院山东轻工业学院

【摘要】 当神经网络用于上市公司的ST预测建模时,取得高质量的样本是相当重要的。本文连续运用主元分析(也称动态主元分析),将多年的数据应用到经济预测模型中去,既增大了信息量又没有增加网络的复杂性,使得预测更加合理有效。最后将动态主元分析与BP网络结合构造了一个网络模型,并给出了实证研究的详细结果。

【Abstract】 It is quite significant to get high-quality samples when neural network is applied to ST forecast model.We apply data of many years to ST forecast model by series principal component analysis dynamic principal component analysis.We therefore increase information quantity while do not increase network complexity.We propose a new ST forecast model by the combination of dynamic principal component analysis and back propagation neural network.We finally present some practical detailed results.

  • 【分类号】F275;F224
  • 【被引频次】3
  • 【下载频次】117
节点文献中: 

本文链接的文献网络图示:

本文的引文网络