节点文献

不确定性量测的融合估计

Data Fusion Algorithm of Parallel Filtering for Uncertain Measurement

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 岑明罗代升刘兴法

【Author】 CEN Ming1,LUO Dai-sheng2,LIU Xing-fa 3(1.School of Automation,Chongqing Univ.of Posts and Telecommunications,Chongqing 400065,China;2.School of Electronics and Info.Eng.,Sichuan Univ.,Chengdu 610064,China;3.Inst.of Optics and Electronics,Chinese Academy of Sciences,Chengdu 610209,China)

【机构】 重庆邮电大学自动化学院四川大学电子信息学院中国科学院光电技术研究所

【摘要】 为了解决多传感器环境下各传感器观测的有效性具有时变不确定性时,难以恰当地构造系统观测向量与观测矩阵的困难,提出一种不确定性观测向量的量测融合算法。该方法对现有并行滤波量测融合估计算法进行推广,为各传感器观测向量的每一维定义其有效度函数,来构造能表示量测不确定性的广义观测向量以及广义误差方差阵,获得形式上的有效量测,就可以利用现有的量测融合方法获得最优融合估计。为了便于数值计算,同时给出一种次优的融合估计算法。实验结果表明,文中方法能适应量测有效性时变情况下的多传感器量测融合估计,且计算量与现有确定性量测的融合估计方法基本相同。

【Abstract】 In multi-sensor environment when availability of measurement is uncertain,it is difficult to construct uniform global observation vector and observation matrix appropriately.To resolve the problem,a measurement fusion algorithm for uncertain measurement was presented.By defining availability function for each dimension of observation vectors to construct generalized observation vectors and covariance matrixes,the uncertainty of measurement was expressed,and formal valid measurement was obtained.The existing measurement fusion algorithm of parallel filtering was then generalized to uncertain scenario,and optimal fusion result can be obtained.To be convenient for numerical calculation,a suboptimal algorithm was put forward also.Simulation results showed that the method presented can deal with the multi-sensor measurement fusion of uncertain availability correctly and calculational cost is almost as the same as one of existing algorithm for certain measurement.

【基金】 [ZK](重庆市教委基金资助项目(KJ070508)[ZK)]
  • 【文献出处】 四川大学学报(工程科学版) ,Journal of Sichuan University(Engineering Science Edition) , 编辑部邮箱 ,2009年06期
  • 【分类号】TP202
  • 【被引频次】1
  • 【下载频次】121
节点文献中: 

本文链接的文献网络图示:

本文的引文网络