节点文献
基于矢谱和L-M神经网络的旋转机械故障诊断研究
Study on Fault Diagnosis for Rotary Machinery Based on Vector Spectrum and L-M Neural Network
【摘要】 讨论了矢谱融合技术和Levenberg-Marquardt(L-M)神经网络的相关理论,提出了基于矢谱和L-M神经网络的旋转机械故障诊断方法,建立了基于矢谱的旋转机械常见故障诊断L-M神经网络模型。模拟实验结果表明:与基于单通道数据的诊断结果对比,将矢谱数据融合应用于旋转机械常见故障诊断,可有效提高故障诊断的准确率。
【Abstract】 The vector spectrum and the Levenberg-Marquardt(L-M) neural network were discussed;the fault diagnosis method for rotary machinery based on vector spectrum and the L-M neural network was put forward,and the L-M neural network model was established.Engineering practice indicated that the fault diagnosis accuracy based on vector spectrum was higher than that based on the information of single channel and the L-M neural network.
【关键词】 旋转机械;
故障诊断;
矢谱;
L-M神经网络;
【Key words】 rotary machinery; fault diagnosis; vector spectrum; L-M neural network;
【Key words】 rotary machinery; fault diagnosis; vector spectrum; L-M neural network;
【基金】 国家自然科学基金资助项目NO.50675209;河南省杰出人才创新基金NO.0621000500~~
- 【文献出处】 汽轮机技术 ,Turbine Technology , 编辑部邮箱 ,2009年05期
- 【分类号】TH17
- 【被引频次】1
- 【下载频次】111