节点文献
针对不同信息特征的鲁棒背景建模技术分析
Analysis of Robust Background Modeling Techniques for Different Information Levels
【摘要】 背景建模是实现运动目标检测与跟踪任务的关键技术之一,背景模型的鲁棒性问题受到普遍关注.本文针对背景建模所依赖的不同信息特征,从实际应用和样本集形态两个方面分析了背景模型的鲁棒性需求.根据不同信息的描述和处理的特点综述了背景建模的典型算法,并考察其对鲁棒性需求的处理策略.然后就不同层次信息的描述及其鲁棒性,比较了典型背景建模系统,并分析了背景建模技术的发展趋势.
【Abstract】 Background modeling is a critical element of detecting and tracking moving objects,and the robustness problem of the background model attracts more and more attention.Firstly,the requirements for robustness are analyzed by taking two aspects into account:different applications/environments and different modalities of sampling sets.Then,a review of current background modeling algorithms and systems is presented according to their information levels and performance.After analyzing these algorithms and comparing typical background modeling systems,several promising directions of background modeling are pointed out for future research.
【Key words】 Object Detecting and Tracking; Background Modeling; Background Subtraction; Robustness; Multi-Information Description;
- 【文献出处】 模式识别与人工智能 ,Pattern Recognition and Artificial Intelligence , 编辑部邮箱 ,2009年02期
- 【分类号】TP391.41
- 【被引频次】15
- 【下载频次】366