节点文献

潜在语义分析中词汇-文本矩阵奇异值分解的并行实现

PARALLEL IMPLEMENTATION OF SINGULAR VALUE DECOMPOSITION FOR TERM-DOCUMENT MATRIX IN LATENT SEMANTIC ANALYSIS

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郭恒明雷咏梅李利杰王雄

【Author】 Guo Hengming1 Lei Yongmei1 Li Lijie2 Wang Xiong1 1(School of Computer Engineering and Science,Shanghai University,Shanghai 200072,China) 2(Ningbo City’s College of Vocational Technology,Ningbo 315100,Zhejiang,China)

【机构】 上海大学计算机工程与科学学院宁波城市职业技术学院

【摘要】 针对潜在语义分析中词汇-文本矩阵奇异值分解的特点,设计并实现了一种基于单边Jacobi的矩阵奇异值分解的并行算法。并行算法采用了一种新的扫描策略和任务划分策略,该策略在一次扫描中能产生n(n1-)/2个不同的列向量对,同时能够对矩阵的列向量按模排序,使奇异值按从大到小的顺序排列。通过在自强3000高性能计算机上的实验表明,并行算法大大缩短了奇异值分解的计算时间,而且随着矩阵规模逐渐变大,加速比趋于稳定。

【Abstract】 According to singular value decomposition(SVD) character of term-document matrix in latent semantic analysis(LSA),a parallel algorithm of SVD computation based on one-side Jacobi was designed and implemented.The new parallel scanning strategy and task partition strategy were adopted in the parallel algorithm,these strategies can generate n(n-1)/2 different column vector pairs once in a scanning operation and sort the column vectors in matrix on norms to queue the singular values in a sequence from big to small at the same time.Some experimental results attained on Ziqiang 3000 hi-performance computer show that this parallel algorithm greatly reduces the computation time of SVD,and its speedup ratio becomes stable along with the increase of matrix dimension.

【基金】 上海高校网格技术E-研究院项目(20030103)
  • 【文献出处】 计算机应用与软件 ,Computer Applications and Software , 编辑部邮箱 ,2009年02期
  • 【分类号】TP391.1
  • 【被引频次】8
  • 【下载频次】428
节点文献中: 

本文链接的文献网络图示:

本文的引文网络