节点文献
零件图像的Hilbert扫描-小波分解去噪处理
Analysis on The Depressing Noise Process of Hilbert Curve-Wavelet in Part Image
【摘要】 提出了利用图像的Hilbert扫描曲线和小波变换实现图像去噪的方法。将含噪声图像生成为Hilbert扫描矩阵,再将Hilbert扫描矩阵转换为一维向量,对一维向量进行小波分解,提取低频分量并转换为二维矩阵。然后,对二维矩阵进行Hilbert反扫描,完成图像去噪处理。仿真实验结果表明该方法是有效的。
【Abstract】 It presents a image depressing noise method based on Hilbert curve in image scanning and wavelet analysis. It uses the noising image to generate Hilbert curve based on matrix,transforms the matrix into one-dimensional vector,detects the wavelet low frequency components and transforms them into two-dimensional matrix. This matrix produces Hilbert inverse scanning and the noises of image are removed. Experiment results show that the method can efficiently remove the noises of image.
【关键词】 小波分解;
Hilbert扫描;
去噪处理;
零件图像;
【Key words】 Wavelet Analysis; Hilbert Curve; Depressing Noise Process; Part Image;
【Key words】 Wavelet Analysis; Hilbert Curve; Depressing Noise Process; Part Image;
【基金】 江苏省教育厅自然基金资助项目(08KJD510014)
- 【文献出处】 中国制造业信息化 ,Manufacture Information Engineering of China , 编辑部邮箱 ,2009年17期
- 【分类号】TP391.41
- 【被引频次】3
- 【下载频次】77