节点文献

大规模零件优化排样研究

A Study of Large Parts Optimal Nesting

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张志强吴庆鸣周俊杰杨威

【Author】 Zhang Zhiqiang1,2,Wu Qingming1,Zhou Junjie1,Yang Wei1(1 School of Power and Mechanical Engineering,Wuhan University,Wuhan 430072;2 Hubei Provincial Key Laboratory of Fluid Machinery and Power Equipment Technology,Wuhan 430072)

【机构】 武汉大学动力与机械学院湖北省流体机械与动力工程装备技术重点实验室

【摘要】 优化排样研究是为提高排样效率及材料利用率以增强企业市场竞争力而进行的研究。针对大规模零件优化排样问题,研究了一种混合排样策略和排样解码算法及相应的智能排样算法。该策略对图形处理、同型排样、解码算法、智能算法进行研究,采用在最低水平线法排样解码算法基础上加入分列思想的排样解码算法和在改进遗传算法基础上加入元算法和禁忌搜索算法的方法提高了大规模零件的排样效率。最后给出了混合排样系统的流程与计算实例,验证了算法的可行性。

【Abstract】 The purpose of large parts optimal nesting study is to enhance the market competitiveness by improving the nesting efficiency and utilization of materials of enterprises.We present a method for improving the nesting efficiency,a layout decoding algorithm and a corresponding intelligent layout algorithm for large-scale layout issues by a mixed layout strategy.This strategy includes the graphics processing,the same type layout,the decoder algorithm and intelligent algorithms for improving the nesting efficiency.We solved the problem of inefficient large parts lay out based on the minimum horizon of nesting decoder algorithm and the improved genetic algorithms that increase calculation efficiency by combining meta algorithm with tabu search algorithm.Finally,giving a mixed layout process as an example,we verify the feasibility of this algorithm.

  • 【文献出处】 机械科学与技术 ,Mechanical Science and Technology for Aerospace Engineering , 编辑部邮箱 ,2009年06期
  • 【分类号】TG385.9
  • 【被引频次】5
  • 【下载频次】169
节点文献中: 

本文链接的文献网络图示:

本文的引文网络