节点文献

基于改进遗传算法的盲解卷积

Blind deconvolution based on improved genetic algorithm

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 董姝敏李尧刘洪波乔双

【Author】 DONG Shu-min1,2,LI Yao3,LIU Hong-bo1,QIAO Shuang4(1.College of Information Technology,Jilin Normal University,Siping Jilin 136000,China;2.College of Underwater Acoustic Engineering,Harbin Engineering University,Harbin Heilongjiang 150001,China;3.School of Physics,Beihua University,Jilin Jilin 132013,China;4.School of Physics,Northeast Normal University,Changchun Jilin 130024,China )

【机构】 吉林师范大学信息技术学院哈尔滨工程大学水声工程学院北华大学物理学院东北师范大学物理学院

【摘要】 针对时域盲解卷积存在求解变量多、收敛速度慢、容易陷入局部最优等问题进行了研究,提出一种防止遗传算法局部收敛的"监测策略",可以实时监控算法向全局最优解靠近的情况;同时对交叉概率、变异概率等关键技术进行相应设计,该算法能够自动跳出局部最优,快速地收敛于全局最优解。在概率密度估计的基础上,得到时域盲解卷积的基于最小互信息的分离准则。以此最小互信息准则确定遗传算法的寻优标准,快速地实现了时域盲解卷积。使用Matlab软件仿真验证了该时域盲解卷积算法的有效性。

【Abstract】 Concerning the multi-variable solution,slow convergence and easily falling into a local optimum in time-domain blind deconvolution,a "monitoring strategy" was proposed in order to prevent from local convergence of genetic algorithm.,which could real-time monitor situation of closing to the optimal solution under the conditions of studying multi-variables solution,slow convergence and easily into a local optimum in time-domain blind deconvolution At the same time,some of the key technologies of the general genetic algorithm,such as crossover probability and mutation probability,were designed correspondingly so that the algorithm could automatically jump out of the local optimum solution,and rapidly converge in the global optimum solution.Separation criteria based on minimum mutual information of time-domain blind deconvolution was obtained on the basis of probability density estimation.That separation criterion used as algorithm optimization standard of genetic algorithm,time-domain blind deconvolution was realized quickly.By using Matlab software to simulate,the effectiveness of time-domain algorithm proposed is confirmed.

【基金】 国家863计划项目(2002AA632080);吉林省自然科学基金资助项目(20050705-6)
  • 【文献出处】 计算机应用 ,Journal of Computer Applications , 编辑部邮箱 ,2009年05期
  • 【分类号】TN911.7
  • 【被引频次】1
  • 【下载频次】183
节点文献中: 

本文链接的文献网络图示:

本文的引文网络