节点文献
基于查询行为和关联规则的相关反馈查询扩展
Query Expansion of Relevance Feedback Based on Users’ Query Behaviors and Association Rules
【摘要】 针对现有查询扩展缺陷,提出基于用户查询行为和词间完全加权关联规则挖掘的相关反馈查询扩展算法。在不改变用户查询信息习惯的前提下,无须用户参与,根据用户查询行为判断初检文档的相关性,提取相关的初检文档,挖掘与原查询相关的关联规则,构造规则库,从中提取与原查询相关的扩展词,实现查询扩展。实验结果表明,该算法能提高信息检索性能,具有很好的应用前景。
【Abstract】 Aiming at the limitations of existing query expansion,this paper proposes a novel query expansion algorithm of relevance feedback based on users’ query behaviors,as well as the technique of item-all-weighted association rule mining in retrieved relevance documents.According to the duration of user’s clicking and browsing,or the existence of some querying behaviors such as downloading,this algorithm is able to determine whether a document is related to users’ query intentions and interests,automatically extract those item-all-weighted association rules related to original query from retrieved relevance documents to construct an association rules-based database,and collect terms related original query as expansion terms from the database.Experimental results show the retrieval performance of the algorithm is improved remarkably.
【Key words】 query expansion; association rules; relevance feedback; information retrieval;
- 【文献出处】 计算机工程 ,Computer Engineering , 编辑部邮箱 ,2009年10期
- 【分类号】TP391.3
- 【被引频次】16
- 【下载频次】286