节点文献
半监督FCM聚类算法目标函数研究
Objective function of semi-supervised FCM clustering algorithm
【摘要】 分析了现有半监督FCM算法目标函数的物理意义和平衡系数α的选取,说明Stutz对Pedrycz目标函数的修改使半监督的物理意义更清楚,它在α=1,0时均退化为标准FCM算法,给出了修改后SS-FCM算法的交替求解过程。实验结果:(1)修改算法与Pedrycz算法有相同的半监督作用和清楚的物理解释;(2)对labeled样本采用FCM算法赋值比用随机数的收敛稳定性高;(3)优选的少量labeled样本,使用模糊协方差的SS-CFCM算法提高了聚类准确性和收敛速度。
【Abstract】 Analyze the physical interpretation of objective function of semi-supervised FCM algorithm and the coefficient α.Illustrate that Stutz’s modification to the objective function provided by Pedrycz is more clear,and when α=1,0,the SS-FCM degrades to FCM.Provide the corresponding alternatively optimizing algorithm of SS-FCM.The experimental results show that:(1) Modified algorithm has same semi-supervised function and has more clear physical interpretation.(2)Using FCM algorithm to as-sign membership for labeled samples is better than using random number(.3)SS-FCM with fuzzy covariance and a small number of good-selected labeled samples can effectively improve the accuracy and convergence rate.
【Key words】 Fuzzy C-Means(FCM) algorithm; semi-supervised clustering; objective function; fuzzy covariance;
- 【文献出处】 计算机工程与应用 ,Computer Engineering and Applications , 编辑部邮箱 ,2009年14期
- 【分类号】TP181
- 【被引频次】33
- 【下载频次】564