节点文献
基于免疫和进化扩散算法的全局优化问题求解算法
Global optimization algorithm based on immune algorithm and evolutionary diffusion optimization
【摘要】 在求解全局优化问题时,通常免疫算法、进化扩散算法分别在局部搜索和全局搜索方面表现较弱。针对这一情况,基于免疫和进化扩散算法,提出了一个免疫-进化扩散算法。该算法结合了免疫和进化扩散两种算法的优点,一方面通过引入基于共享机制的小生境算法,保持了群体的多样性,另一方面通过提出一种步长参数动态调整策略,提高了算法效率。实验结果表明,在给定精度下,该算法的效率和稳定性都明显优于Tsui的进化扩散算法和Ingber的自适应模拟退火算法。最后对步长参数动态调整策略进行了分析。
【Abstract】 In solving global optimization,immune algorithm is usually weak in local search,while evolutionary diffusion optimization is weak in global search.To overcome these shortcomings,an immune-evolutionary-diffusion optimization algorithm was proposed.This algorithm combines the advantages of the immune algorithm and evolutionary diffusion optimization.On one hand,it retains the diversity of colony through importing the niche algorithm;on the other hand,it improves the efficiency of the algorithm by proposing a strategy of dynamically adjusting the parameter of step size.Experimental results show that,regarding the efficiency and stability for a given precision,this algorithm performs better than Tisui’s evolutionary diffusion optimization and Ingber’s adaptive simulated annealing algorithm.The strategy of dynamically adjusting the parameter of step size was analyzed.
【Key words】 artificial intelligence; global optimization algorithm; immune-evolutionary diffusion optimization; niche;
- 【文献出处】 吉林大学学报(工学版) ,Journal of Jilin University(Engineering and Technology Edition) , 编辑部邮箱 ,2009年01期
- 【分类号】TP18
- 【被引频次】3
- 【下载频次】227