节点文献

基于改进的支持向量机方法的多目标图像分割

Segmentation of Multi-target Image Based on Improved Support Vector Machine Approach

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 徐海祥曹万华陈炜郭丽艳

【Author】 Xu Haixiang1),2) Cao Wanhua1),2) Cheng Wei2) Guo Liyuan2)(College of Computer Science and Technology,Harbin Engineering University1),Harbin 150001)(Wuhan Digital Engineering Institute2),Wuhan 430074)

【机构】 哈尔滨工程大学计算机科学与技术学院武汉数字工程研究所

【摘要】 支持向量机方法被看作是对传统学习分累方法的一个好的替代,特别在小样本、高维情况下,具有较好的泛化性能。针对一对一支持向量机方法进行了改进,并采用其对多目标图像进行了分割研究。实验结果表明,支持向量机方法是一种很有前景的图像分割技术。

【Abstract】 Support vector machine approach is considered as a good candidate because of its good generalization performance,especially when the number of training samples is very small and the dimension of feature space is very high.In this paper,an improved one-against-one support vector machine is proposed and the segmentation of multi-target image based on the improved one-against-one support vector machine approach is investigated.Experimental results show that support vector machine approach is a promising technique for image segmentation.

  • 【文献出处】 舰船电子工程 ,Ship Electronic Engineering , 编辑部邮箱 ,2009年02期
  • 【分类号】TP391.41
  • 【被引频次】6
  • 【下载频次】245
节点文献中: 

本文链接的文献网络图示:

本文的引文网络