节点文献
Riesz multiwavelet bases generated by vector refinement equation
【摘要】 In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L2(Rs). Suppose ψ = (ψ1, . . . , ψr)T and ψ = ( ψ1, . . . , ψr)T are two compactly supported vectors of functions in the Sobolev space (Hμ(Rs))r for some μ > 0. We provide a characterization for the sequences {ψjk : = 1, . . . , r, j ∈ Z, k ∈ Zs} and {ψ jk : = 1, . . . , r, j ∈ Z, k ∈ Zs} to form two Riesz sequences for L2(Rs), where ψjk = mj/2ψ (M j ·k) and ψjk = mj/2 ψ (M j ·k), M is an s × s integer matrix such that limn→∞ Mn = 0 and m = |detM|. Furthermore, let = (1, . . . , r)T and = ( 1, . . . , r)T be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, a and M, where a and a are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1, . . . , ψνr)T and ψν = ( ψν1, . . . , ψ?νr)T , ν = 1, . . . , m 1 such that two sequences {ψjνk : ν = 1, . . . , m 1, = 1, . . . , r, j ∈ Z, k ∈ Zs} and {ψ jνk : ν = 1, . . . , m 1, = 1, . . . , r, j ∈ Z, k ∈ Zs} form two Riesz multiwavelet bases for L2(Rs). The bracket product [f, g] of two vectors of functions f, g in (L2(Rs))r is an indispensable tool for our characterization.
【Abstract】 In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L2(Rs). Suppose ψ = (ψ1, . . . , ψr)T and ψ = ( ψ1, . . . , ψr)T are two compactly supported vectors of functions in the Sobolev space (Hμ(Rs))r for some μ > 0. We provide a characterization for the sequences {ψjk : = 1, . . . , r, j ∈ Z, k ∈ Zs} and {ψ jk : = 1, . . . , r, j ∈ Z, k ∈ Zs} to form two Riesz sequences for L2(Rs), where ψjk = mj/2ψ (M j ·k) and ψjk = mj/2 ψ (M j ·k), M is an s × s integer matrix such that limn→∞ Mn = 0 and m = |detM|. Furthermore, let = (1, . . . , r)T and = ( 1, . . . , r)T be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, a and M, where a and a are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1, . . . , ψνr)T and ψν = ( ψν1, . . . , ψ?νr)T , ν = 1, . . . , m 1 such that two sequences {ψjνk : ν = 1, . . . , m 1, = 1, . . . , r, j ∈ Z, k ∈ Zs} and {ψ jνk : ν = 1, . . . , m 1, = 1, . . . , r, j ∈ Z, k ∈ Zs} form two Riesz multiwavelet bases for L2(Rs). The bracket product [f, g] of two vectors of functions f, g in (L2(Rs))r is an indispensable tool for our characterization.
【Key words】 vector refinement equations; Riesz multiwavelet base; biorthogonal wavelets;
- 【文献出处】 Science in China(Series A:Mathematics) ,中国科学(A辑:数学)(英文版) , 编辑部邮箱 ,2009年03期
- 【分类号】O174.41
- 【被引频次】5
- 【下载频次】36