节点文献

一种度量空间中的可逆近邻搜索算法

A reverse nearest neighbor search algorithm in metric space

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 蒋涛冯玉才李国徽朱虹

【Author】 Jiang Tao Feng Yucai Li Guohui Zhu Hong(College of Computer Science and Technology,Huazhong University ofScience and Technology,Wuhan 430074,China)

【机构】 华中科技大学计算机科学与技术学院

【摘要】 提出了一种不同于R-tree和M-tree索引的RkNN搜索算法RiDistance,主要思想是将数据集索引到一棵B+树上来修剪搜索空间.首先,针对每个维度将所有对象进行排序;然后,基于排序信息将数据集分成一些小的分区并计算它们的单维索引距离;最后,使用一个filter-refine框架来处理RkNN查询.实验结果显示RiDistance是高效率的,它能修剪掉大部分的搜索空间,而且比序列扫描方法快几个数量级.

【Abstract】 Reverse k-nearest neighbor(RkNN) search is very useful in identifying the influence or the importance of objects.Existing methods for processing such search generally make use of traditional vector space index or metric space index,for example,R-tree or M-tree,to finish the task.However,we proposed an efficient RkNN algorithm,called RiDistance,which is different from conventional algorithms to process RkNN query,whose main idea is indexing the whole data set into a simple B+-tree to prune the search space such that the algorithm can early throw away the current compared object.Firstly,all objects are ordered at each dimension.Then,these objects are partitioned into many sub-partitions based on the ordered information,according to the partition principle of nearest neighbor,and the single dimensional distances are computed.At last,using a filter-refine search framework answers the RkNN query.The results of several experiments showed that RiDistance is effective and efficient because it can prune most search space and obtains several orders of magnitude performance improvement relative to sequential scan method in answering RkNN queries.

【基金】 国家高技术研究发展计划资助项目(2007AA01Z309,2006AA01Z430);国土资源部三峡库区三期地质灾害防治重大科研专项基金资助项目(SXKY3-6-3)
  • 【文献出处】 华中科技大学学报(自然科学版) ,Journal of Huazhong University of Science and Technology(Nature Science Edition) , 编辑部邮箱 ,2009年08期
  • 【分类号】TP391.3
  • 【被引频次】1
  • 【下载频次】113
节点文献中: 

本文链接的文献网络图示:

本文的引文网络