节点文献

基于小波变换的超声图像纹理特征提取及前列腺癌诊断

Diagnosis of Prostate Cancer and Texture Feature Extraction of Ultrasound Images Based on Wavelet Transform

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 杨振森李传富周康源刘伟冯焕清

【Author】 YANG Zhen-sen,LI Chuan-fu,ZHOU Kang-yuan,LIU Wei,FENG Huan-qing. Department of Electronic Engineering and Information Science, University of Science &Technology of China, Hefei Anhui 230027, China

【机构】 中国科学技术大学电子工程与信息科学系安徽中医学院第一附属医院影像中心中国科学技术大学电子科学与技术系

【摘要】 目的根据小波变换原理,研究了前列腺直肠超声图像中纹理特征的提取方法,并应用于前列腺癌的早期诊断。方法本文提取出前列腺直肠超声图像中目标区域的小波变换纹理特征和边界频率特征,通过主分量分析方法(principal components analysis,PCA)对提取出的纹理特征进行选择,得到一个最优的特征子集。然后分别应用K均值聚类、支持向量机(support vector machine,SVM)算法和AdaBoost(a-daptive boosting)算法来对所提取出的病变区域纹理特征进行分类。结果对比实验结果表明,本文所提取的特征比单纯的使用灰度级差矢量(gray level difference vector,GLDV)具有更好的区分良恶性图像的能力,AdaBoost算法和SVM算法都能够有效地识别病变区域,识别正确率达到94.12%和93.46%。结论使用本文算法可以为医生诊断提供有用的辅助信息,并提高诊断效率。

【Abstract】 Objective To study the texture feature extraction of prostate ultrasound images based on the wavelet transform for the early diagnosis of prostate cancer. Methods This paper extracted the wavelet texture features and edge-frequency features from pathological regions in transrectal ultrasound images,then the reduced optimal feature set was selected by principal components analysis(PCA) algorithm,and the classification was done by K-means,support vector machine(SVM) and AdaBoost algorithm individually. Results We compared the texture features with Mohamed’s,the experiment results showed that the extracted features had the better ability to differentiate the benign or malignant images than the mere gray level difference vector (GLDV). AdaBoost and SVM could differentiate the pathology regions efficiently and gave the identify rate of 94.12%,93.46% respectively. Conclusion The proposed algorithm can supply useful information to the doctors for the clinical diagnosis and the diagnosis efficiency is enhanced.

【基金】 安徽省教委自然科学基金重点研究项目(2006KJ097A)
  • 【文献出处】 航天医学与医学工程 ,Space Medicine & Medical Engineering , 编辑部邮箱 ,2009年04期
  • 【分类号】TP391.41
  • 【被引频次】10
  • 【下载频次】288
节点文献中: 

本文链接的文献网络图示:

本文的引文网络