节点文献
量子强关联网络的能谱及应用
Energy Spectrum and Application for Quantum Strongly Correlated Network
【摘要】 分析了一个由安德逊s-d混合模型构成的量子强关联网络系统,通过施里弗-沃尔夫变换,利用投影双时格林函数方法,得出网络系统的能谱;利用格林函数的谱函数研究系统的局域磁性,并讨论了系统的能量如何影响着节点上量子自旋朝上或朝下的数目。进一步,可以通过费米网络模型的参量,如占有数,来研究局域磁矩的大小,由此说明占有数是一个反映网络拓扑性能和动力学性能的重要物理学参量。
【Abstract】 In this work,we consider a quantum strongly correlated network described by an Anderson s-d mixing model.By introducing the Green function on the projected formalism of the Schrieffer and Wolf transformation,the energy spectrum of the system can be obtained.The local magnetism of the model can be studied by using the spectral function of Green function,which is shown how the energy of the system influence the number of up or down spin.Moreover,the given survivability of the fermionic network mo-del can be used to study the local magnetism,which shows that the survivability is an important statistical characteristic quantity which not only reflects the network topological property but also dynamics.
【Key words】 strongly correlated; Anderson s-d mixing model; Green function; survivability; local magnetism;
- 【文献出处】 复杂系统与复杂性科学 ,Complex Systems and Complexity Science , 编辑部邮箱 ,2009年01期
- 【分类号】N94;O413
- 【被引频次】1
- 【下载频次】99