节点文献
Heisenberg群上高阶退化椭圆方程解的Morrey正则性
Morrey regularity of higher order degenerate elliptic equation on the Heisenberg group
【摘要】 为了得到Heisenberg群上具有不连续系数的高阶退化椭圆方程强解的Morrey正则性,利用了Heisenberg群上奇异积分和奇异积分与BMO函数的交换子在Morrey空间上的有界性,通过凝固系数法,并将高阶向量场导数表示为奇异积分及交换子的和,由加权Morrey半范数的内插不等式得到高阶退化椭圆方程强解在Morrey空间中的正则性.
【Abstract】 The Morrey regularity of higher order degenerate elliptic equation with VMO coefficient on the Heisenberg group is obtained by using the boundedness of singular integrals and the commutators of singular integrals with the BMO function on the Morrey space.Furthermore,higher order derivative of vector field is represented by the sum of singular integrals and the commutators of singular integrals,and the Morrey regularity of strong solution to higher order degenerate elliptic equation is achieved through freezing coefficient.
【关键词】 Heisenberg群;
Morrey空间;
奇异积分;
VMO(零平均震荡);
BMO(有界平均震荡);
【Key words】 Heisenberg groap; Morrey space; singular integrals; VMO(vanishing mean oscillation); BMO(Bounded mean oscillation);
【Key words】 Heisenberg groap; Morrey space; singular integrals; VMO(vanishing mean oscillation); BMO(Bounded mean oscillation);
【基金】 陕西省自然科学基础研究计划资助项目(2006A09);西北工业大学科技创新基金(2007KJ01012))
- 【文献出处】 纺织高校基础科学学报 ,Basic Sciences Journal of Textile Universities , 编辑部邮箱 ,2009年04期
- 【分类号】O175.25
- 【被引频次】2
- 【下载频次】36