节点文献

一种NLOS环境下的TOA/AOA定位算法

A TOA/ AOA Location Algorithm in NLOS Environment

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 毛永毅李明远张宝军

【Author】 Mao Yong-yi①②③ Li Ming-yuan④ Zhang Bao-jun③ ①(National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China) ②(Graduate University of the Chinese Academy of Sciences, Beijing 100039, China) ③(Dept. of Electronic and Information, Xi’an University of Post and Telecommunications, Xi’an 710061, China) ④(School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

【机构】 中国科学院国家授时中心中国科学院研究生院西安邮电学院电信系西安交通大学电子与信息工程学院

【摘要】 为了减小NLOS传播的影响,基于几何结构的单次反射统计信道模型,该文提出一种NLOS环境下的TOA/AOA定位算法。利用RBF神经网络较快的学习特性和逼近任意非线性映射的能力,对NLOS传播的误差进行修正以减小NLOS传播的影响,再利用最小二乘(LS)算法进行定位,从而提高系统的定位精度。仿真结果表明,该算法在NLOS环境下有较高的定位精度,性能优于Chan算法,Taylor算法和LS算法。

【Abstract】 In order to mitigate the effect of NLOS propagation, based on the Geometry Based Single- Bounced (GBSB)statistical model, a TOA/AOA location algorithm based on the RBF neural network is proposed. The fast study and non-linear approach capacity of the neural network is made use of to correct the error of NLOS propagation, then the position is calculated by Least-Square (LS) algorithm to improve the location accuracy. The simulation results indicate that the location accuracy is significantly improved and the performance of this algorithm is better than that of Chan algorithm, Taylor algorithm and LS algorithm in NLOS environment.

【基金】 陕西省自然科学基金(2004F12)资助课题
  • 【文献出处】 电子与信息学报 ,Journal of Electronics & Information Technology , 编辑部邮箱 ,2009年01期
  • 【分类号】TN929.53
  • 【被引频次】92
  • 【下载频次】1808
节点文献中: 

本文链接的文献网络图示:

本文的引文网络