节点文献

优化动态递归小波神经网络短期负荷预测模型

Short-term Load Forecasting Model Based on Optimized Dynamic Recurrent Wavelet Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张智晟段晓燕李伟婕龚文杰孙雅明

【Author】 ZHANG Zhi-sheng 1,DUAN Xiao-yan 2,LI Wei-jie 2,GONG Wen-jie 2,SUN Ya-ming 3 (1.School of Automation Engineering,Qingdao University,Qingdao 266071,China; 2.Qingdao Electric Power Company,Qingdao 266002,China; 3.School of Electrical Engineering and Automation,Tianjin University, Tianjin 300072,China)

【机构】 青岛大学自动化工程学院青岛供电公司天津大学电气与自动化工程学院

【摘要】 提出了优化动态递归小波神经网络(dynamic recurrent wavelet neural network,DRWNN)短期负荷预测模型。与常规小波神经网络相比,DRWNN有两个关联层,关联层节点起存储网络内部状态的作用;模型构造过程中增强了网络的前馈与反馈联接,形成多层次的网络递归。采用分布估计算法和遗传算法相融合对DRWNN进行优化,融合实质是在解空间"宏观"和"微观"两个层面进行寻优,可克服DRWNN陷入局部最小,提高DRWNN的泛化能力。对两类不同负荷系统日、周预测仿真测试,验证了模型能有效提高预测精度。

【Abstract】 An optimized DRWNN(dynamic recurrent wavelet neural network) model for STLF(short-term load forecasting) is constructed in this paper.Compared with conventional wavelet neural network,DRWNN owns two context layers,nodes of which can save internal state of network;The feed-forward connection and feedback connection are increased,which forms recursion from multi-level.The DRWNN is optimized by the combining estimation of distribution algorithm with genetic algorithm,essence of which is searching the optimal solution from microscopic and macroscopic level,and it can avoid DRWNN immersing in the local minimal points and improve generalization ability.Two kinds of load systems are used in case study,and the testing results show the proposed model can effectively improve the precision of STLF.

【基金】 山东省教育厅科技计划项目(J07WJ10);青岛大学引进人才科研基金项目(063-06300520)
  • 【文献出处】 电力系统及其自动化学报 ,Proceedings of the Chinese Society of Universities for Electric Power System and its Automation , 编辑部邮箱 ,2009年05期
  • 【分类号】TM715
  • 【被引频次】7
  • 【下载频次】225
节点文献中: 

本文链接的文献网络图示:

本文的引文网络