节点文献

基于两次聚类的k-匿名隐私保护

k-Anonymity via Twice Clustering for Privacy Preservation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 李太勇唐常杰吴江周敏

【Author】 LI Tai-yong1,2,TANG Chang-jie2,WU Jiang1,2,ZHOU Min3(1.School of Economic Information Engineering,Southwest University of Finance and Economics,Chengdu 610074,China;2.School of Computer Science,Sichuan University,Chengdu 610065,China;3.College of Computer Science,Civil Aviation Flight University of China,Guanghan 618307,China)

【机构】 西南财经大学经济信息工程学院四川大学计算机学院中国民航飞行学院计算机学院

【摘要】 已有的k-匿名方法忽视了准标识符对不同敏感属性的影响且只考虑了对元组本身的聚类,在数据发布时造成了较大的信息损失。为此,提出一种通过两次聚类实现k-匿名的隐私保护方法。给出了影响矩阵的概念,用来描述准标识符对敏感属性的影响,研究了影响矩阵聚类技术,对敏感属性影响相近的元组进行聚类,实现k-匿名效果。实验验证结果表明,该方法具有良好的隐私保护效果,相对于基本k-匿名方法,该方法具有更小的平均等价类大小和更少的运行时间。

【Abstract】 k-anonymity is a current hot spot for privacy preservation.The existing k-anonymous methods ignored the quasi-identifier’s different influences on the sensitive attributes and clustered the tuples only,which caused much information loss while publishing the data.To cope with this problem,a novel k-anonymity via twice clustering and the concept of influence matrix to express the quasi-identifier’s influences on different sensitive attributes are proposed.The clustering techniques over influence matrix are investigated and the tuples with near influences on the sensitive attributes are clustered to achieve k-anonymity.The experimental results show that the proposed methods are effective and feasible to privacy preservation.Compared with basic k-anonymity,the methods have less average equivalence class size and less run time.

【关键词】 k-匿名隐私保护数据安全聚类
【Key words】 k-anonymityprivacy preservationdata securityclustering
【基金】 国家自然科学基金资助项目(60773169);国家科技支撑计划重大基金资助项目(2006BAI05A01)
  • 【文献出处】 吉林大学学报(信息科学版) ,Journal of Jilin University(Information Science Edition) , 编辑部邮箱 ,2009年02期
  • 【分类号】TP311.13
  • 【被引频次】17
  • 【下载频次】354
节点文献中: 

本文链接的文献网络图示:

本文的引文网络