节点文献
双解析函数的一般复合边值问题关于边界曲线的稳定性
The stability of the general compound boundary value problem for bianalytic functions about boundary curve
【摘要】 开口弧段Γ上的双解析函数的Riemann边值问题与单位圆周L上双解析函数的Hilbert边值问题复合而成的一般复合边值问题,当L与Γ发生微小的光滑摄动后,借助于推广的拉甫伦捷夫近似于圆的共形映射,将星形域映为单位圆域,从而得出摄动后的问题的解的表达式,同时讨论了解的稳定性情况,并给出误差估计.
【Abstract】 For the general compound boundary value problems combining Riemann boundary value problem for bianalytic functions on an open arc Γ and Hilbert boundary value problem for bianalytic functions on a unit circle L,when smooth perturbation happens for Γ and L,by extending Lavrentjev’s conformal mapping on a region approximating to a unit disc from a star-like domain onto a unit disc,the authors show the solutions of the perturbed problem.They also discuss the stability of the solutions and give error estimates.
【关键词】 双解析函数;
复合边值问题;
光滑摄动;
共形映射;
稳定性;
【Key words】 bianalytic functions; compound boundary value problem; smooth perturbation; conformal mapping; stability;
【Key words】 bianalytic functions; compound boundary value problem; smooth perturbation; conformal mapping; stability;
【基金】 福建省自然科学基金(2008J0187);福建省教育厅科技项目(JA08255)
- 【文献出处】 纯粹数学与应用数学 ,Pure and Applied Mathematics , 编辑部邮箱 ,2009年04期
- 【分类号】O175.8
- 【被引频次】1
- 【下载频次】39