节点文献
基于方阵乘幂的马尔可夫链问题研究
Markov Chain Based on Square Matrix of Factorial Power
【摘要】 马尔可夫链是一类重要且得到广泛应用的随机过程。指出一步转移概率、n步转移概率以及稳态概率等重要概念与线性代数中的矩阵、矩阵乘幂之间的密切联系,重点引入求解方阵的高次幂的相似对角化方法,最后结合实例,利用相似对角化方法推导出其计算结果。
【Abstract】 Markov chain is a special kind of stochastic process which is widely used.First,the author introduces some important concepts of Markov chain,such as one step state transition probability,n step state transition probability and probability of stability,which closely associate with the conceptions of matrix,square matrix of factorial power.And then,a method of similar diagonalization is shown mainly which is used to solve square matrix of factorial power.And the end,an example is given to illustrate the method of similar diagonalization.
【关键词】 马尔可夫链;
转移概率;
稳态概率;
方阵的高次幂;
【Key words】 Markov chain; state transition probability; probability of stability; square matrix of factorial power;
【Key words】 Markov chain; state transition probability; probability of stability; square matrix of factorial power;
- 【文献出处】 北京印刷学院学报 ,Journal of Beijing Institute of Graphic Communication , 编辑部邮箱 ,2009年06期
- 【分类号】O211.62
- 【被引频次】3
- 【下载频次】154