节点文献

一种基于混沌映射的粒子群优化算法及性能仿真

Improvement of Chaos Particle Swarm Optimization Algorithm and Analysis of Its Property

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 张浩沈继红张铁男李阳

【Author】 ZHANG Hao1,SHEN Ji-hong2,ZHANG Tie-nan3,LI Yang3 (1.College of Automation,Harbin Engineering University,Harbin 150001,China; 2. College of Science,Harbin Engineering University,Harbin 150001,China; 3. School of Economics and Management,Harbin Engineering University,Harbin 150001,China)

【机构】 哈尔滨工程大学自动化学院哈尔滨工程大学理学院哈尔滨工程大学经济管理学院

【摘要】 粒子群算法收敛速度快,规则简单,但易陷入局部极值。在粒子群算法中引入混沌序列,提出一种优化策略,以分阶段的思想进行寻优,使其在搜索初期更具遍历性,在搜索中后期,通过人为改变个别粒子的速度和位置,使算法具有更快的收敛速度与更好的全局搜索能力。在此基础上,提出一种改进Tent映射的策略,并将优化策略分别应用于基于Logistic映射的粒子群和改进的Tent映射的粒子群,同标准粒子群算法在寻优速度、精度、成功率等方面进行仿真与比较。

【Abstract】 Particle Swarm Optimization(PSO) is an evolution algorithm by simulating birds feeding. Its convergence speed is fast,and the regulation is simple. But it’s easy to be trapped into local extremum. The improved Chaos Particle Swarm Optimization Algorithm was proposed. At the initial searching stage,the algorithm has better ergodicity. At the medium stage and later stage,the algorithm has faster convergence speed and better global searching capability through changing a certain particle’s speed and position. The LogisticPSO,the improved TentPSO and the standard PSO were compared with each other in the speed,accuracy and successful ratio of optimization.

【基金】 国家自然科学基金资助项目(70672086)
  • 【文献出处】 系统仿真学报 ,Journal of System Simulation , 编辑部邮箱 ,2008年20期
  • 【分类号】TP301.6
  • 【被引频次】26
  • 【下载频次】651
节点文献中: 

本文链接的文献网络图示:

本文的引文网络