节点文献

一种减小NLOS影响的TDOA/AOA数据融合定位算法

Effective TDOA/AOA data fusion location algorithm for mitigating the influence of the NLOS propagation

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 毛永毅李明远张宝军

【Author】 MAO Yong-yi1,LI Ming-yuan2,ZHANG Bao-jun1(1.Dept.of Electronic and Information,Xi’an Univ.of Post and Telecommunications,Xi’an 710061,China;2.School of Electronics and Information Engineering,Xi’an Jiaotong Univ.,Xi’an 710049,China)

【机构】 西安邮电学院电信系西安交通大学电子与信息工程学院

【摘要】 提出了到达时间差/到达角数据融合定位算法.利用RBF神经网络对到达时间差的测量值进行修正以减小非视距传播影响,然后利用到达时间差定位算法和到达角定位算法分别估算移动台位置,最后对到达时间差和到达角定位结果进行加权平均得到移动台位置.仿真结果表明该算法在郊区、一般市区和闹市区环境下均能够有效地提高定位精度和可靠性.

【Abstract】 A time difference of arrival/angle of arrival(TDOA/AOA) data fusion location algorithm is proposed.The RBF neural network is made use of to correct the measurement of TDOA to mitigate the effect of the non-line-of-sight(NLOS) propagation,then the position of MS is calculated by the TDOA location algorithm and AOA location algorithm,and finally the position of MS is determined by the weighted average of TDOA and AOA location results.Simulation results indicate that this algorithm can significantly improve the location accuracy and reliability under suburban,urban and bad urban environments.

【基金】 陕西省自然科学基金资助(2004F12)
  • 【文献出处】 西安电子科技大学学报 ,Journal of Xidian University , 编辑部邮箱 ,2008年05期
  • 【分类号】TN929.53
  • 【被引频次】16
  • 【下载频次】301
节点文献中: 

本文链接的文献网络图示:

本文的引文网络