节点文献
采用二代曲波变换和反向传播神经网络的人脸识别方法
Method for Face Recognition Using Second-Generation Curvelet Transform and Back Propagation Neural Network
【摘要】 针对小波变换在人脸识别中存在识别正确率较低的问题,提出了一种基于二代曲波变换的人脸识别方法.首先将所有样本图像和测试图像通过基于"打包"的快速离散曲波变换进行分解,获得不同尺度、不同角度的曲波变换系数,再利用曲波变换分解系数中包含了人脸重要特征信息的低频系数,作为特征参数送入反向传播(BP)神经网络中进行学习训练,最后将训练好的BP神经网络用于人脸识别.经剑桥大学ORL人脸库的图像识别实验表明,所提方法的识别正确率达到95%,比Daub(2)小波基的小波变换方法的识别正确率提高了2.5%.
【Abstract】 To improve the recognition rate of the wavelet-based methods for face recognition,a multiscale face recognition method based on second-generation curvelet transform is proposed.All face images are decomposed by using digital curvelet transform via wrapping.Curvelet coefficients of low frequency and high frequency in different scales and of various angles are obtained.Most significant information of faces is contained in the low frequency coefficients which are important for face recognition.Then,the low frequency coefficients are applied as study samples to the BP neural network.Finally,low frequency coefficients of some test face images are used to simulate the neural network to get the face recognition results.The experiments that are performed on the Cambridge university ORL database show that the proposed method has better performance than wavelet-based method,and that the recognition rate is improved to 95%(with 2.5% improvement).
- 【文献出处】 西安交通大学学报 ,Journal of Xi’an Jiaotong University , 编辑部邮箱 ,2008年10期
- 【分类号】TP391.41
- 【被引频次】15
- 【下载频次】398