节点文献
一类变时滞微分代数方程单支方法的收敛性
CONVERGENCE OF ONE-LEG METHODS FOR A CLASS OF VARIABLE RETARDED DIFFERENTIAL ALGEBRAIC EQUATIONS
【摘要】 B-收敛和D-收敛的概念被推广到了变时滞微分代数方程问题,给出了D_A-收敛的定义,讨论了该类问题的D_A-收敛性,并给出了相应的误差估计,证明了如果G-稳定的单支方法对于常微分方程初值问题在经典意义下是p阶相容的且(βκ/ακ)>0,那么具有线性插值过程的该方法是p阶D_A-收敛的,这里p=1或2。
【Abstract】 This paper extends B-convergence and D-convergence to a class of variable retarded dif- ferential algebraic equations and puts forward DA-convergence.Furthermore,D_A-convergence of the problem is discussed and its error estimation is given.Finally,it is proved that a One- Leg method with linear interpolation procedure is DA-convergent of order p if it is G-stable and consistent of order p for ordinary differential equations andβκ/ακ>0,here p=l or 2.
【关键词】 变时滞微分代数方程;
单支方法;
G-稳定;
D-收敛;
【Key words】 variable retarded differential algebraic equations; one-leg methods; G-stability; D-convergence;
【Key words】 variable retarded differential algebraic equations; one-leg methods; G-stability; D-convergence;
【基金】 国家自然科学基金(10571066)
- 【文献出处】 数值计算与计算机应用 ,Journal on Numerical Methods and Computer Applications , 编辑部邮箱 ,2008年03期
- 【分类号】O175
- 【被引频次】8
- 【下载频次】127