节点文献
中心化子的刻画
Characterization of Centralizers
【摘要】 令X为实或复域F上的Banach空间,■为X上的标准算子代数,I是■的单位元.设Φ:■→■是可加映射.本文证明了,如果有正整数m,n,使得Φ满足条件Φ(Am+n+1)-AmΦ(A)An∈FI对任意A成立,则存在λ∈F,使得对所有的A∈■,都有Φ(A)=λA.同样的结果对于自伴算子空间上的可加映射也成立.此外,本文还给出了中心素代数上满足条件(m+n)Φ(AB)-mAΦ(B)-nΦ(A)B∈FI的可加映射Φ的完全刻画.
【Abstract】 Let X be a Banach space over the real or complex field F,let A be a standard operator algebra on X with unit I.Suppose thatΦ:A→A is an additive map and m,n are positive integers.It is proved that,ifΦsatisfiesΦ(Am+n+1) - AmΦ(A)An∈FI for all A∈A,then there exists someλ∈F such thatΦ(A) =λA for all A∈A.The same result is true for additive maps on the space of all self- adjoint operators.In addition,a complete characterization of mapsΦon centrally prime algebras satisfying (m+n)Φ(AB) - mAΦ( B ) - nΦ( A )B∈FI is obtained.
- 【文献出处】 数学学报 ,Acta Mathematica Sinica , 编辑部邮箱 ,2008年03期
- 【分类号】O177
- 【被引频次】17
- 【下载频次】200