节点文献
万有Teichmuller空间Pre-Schwarz导数模型及拟共形扩张
Quasiconformal Extension Property and the Universal Teichmuller Space by Pre-Schwarzian Derivative
【摘要】 主要研究了一些对应于万有Teichmuller空间Pre-Schwarz导数模型中点的函数的拟共形扩张,得到了函数的拟共形扩张的复伸张与之Pre-Schwarz导数范数的一些关系,最后,通过具体构造一类函数的拟共形扩张表达式,得到了角域的Pre-Schwarz导数单叶性内径下界估计的另一种证明方法。
【Abstract】 This paper investigates some quasiconformal extensions of the functions cor- responding to the points in the universal Teichmuller space by Pre-Schwarzian derivative, and finds some connections between the complex dilatations of the quasiconformal extension functions and the norms of the Pre-Schwarzian derivatives.In the last section of the paper, the authors find another proof for the lower bound of the inner radius of univalency for an- gular domains by constructing an explicit quasieonformal extension of a class of holomorphic functions.
【关键词】 Pre-Schwarz导数;
单叶性内径;
万有Teichmuller空间;
拟共形扩张;
【Key words】 Pre-Schwarzian derivative; Inner radius of univalency; Universal Teichmuller space; Quasiconformal extension;
【Key words】 Pre-Schwarzian derivative; Inner radius of univalency; Universal Teichmuller space; Quasiconformal extension;
【基金】 国家自然科学基金(No.10571028);上海高校选拔培养优秀青年教师科研专项基金资助的项目.
- 【文献出处】 数学年刊A辑(中文版) ,Chinese Annals of Mathematics , 编辑部邮箱 ,2008年06期
- 【分类号】O174.55
- 【被引频次】1
- 【下载频次】91