节点文献

铅黄铜超塑性能的人工神经网络预测

Superplastic Performance Prediction of Lead Brass Based on Artificial Neural Network

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 郭俊卿陈拂晓李合军杨永顺

【Author】 GUO Junqing1,2,CHEN Fuxiao1,2,,LI Hejun1,YANG Yongshun1,2(1.College of Material Science and Engineering,Henan University of Science and Technology,Luoyang 471003,China;2.Henan Key Laboratory of Advanced Non-ferrous Metals,Luoyang 471003,China)

【机构】 河南科技大学材料科学与工程学院

【摘要】 利用人工神经网络对铅黄铜超塑性能进行了预测研究,通过对试样在不同超塑性拉伸条件下的性能进行学习,建立了拉伸条件与性能的BP网络预测模型。结果表明,所建模型可以较好地反映超塑性拉伸条件与性能间的内在规律,预测值和试验结果吻合良好,其最大误差不超过10%,人工神经网络用于铅黄铜超塑性能的预测具有可行性和有效性。

【Abstract】 The superplastic performance prediction of lead brass was studied based on artificial neural network.Through studying the performance of lead brass samples under superplastic tension conditions,the prediction model of BP neural network was founded.The results show that the founded model can reflect the relationship between superplastic tension conditions and performance,and predicting values agree well with tests in accordance less than 10%.It indicates that the prediction of lead brass superplasticity using artificial neural network is effective and feasible.

  • 【文献出处】 热加工工艺 ,Hot Working Technology , 编辑部邮箱 ,2008年14期
  • 【分类号】TG146.11
  • 【被引频次】1
  • 【下载频次】77
节点文献中: 

本文链接的文献网络图示:

本文的引文网络