节点文献

混合滤波去噪与微粒群算法优化的辨识方法

Denoising and Disturbance-rejecting Identification Algorithm Based on Hybrid Filter and Swarm Optimization

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 刘清岳东

【Author】 LIU Qing~a,YUE Dong~b(a.School of Mathematics and Computer Science;b.School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210042,China)

【机构】 南京师范大学数学与计算机科学学院南京师范大学电气与自动化工程学院 南京210042南京210042

【摘要】 针对实际系统信号中不可避免会存在噪声和瞬时扰动,提出了多项式预测与中值滤波相结合的混合实时滤波算法,消除噪声污染.对于去噪后的数据,由于包含瞬时扰动,故用最小二乘辨识算法仍然不能获得满意的结果.为此,在混合滤波去噪的基础上,采用了一种用微粒群算法优化的最小绝对误差辨识算法.仿真实验表明,所提出的方法能够同时克服噪声和瞬时扰动的不利影响,并能获得较好的辨识结果.

【Abstract】 Additive noise and instantaneous disturbance may produce adverse influences to system identification.However,an output of a real system is often affected by both noise and disturbance.To reduce these disadvantageous influences,a hybrid filter that combines polynomial prediction filter and median filter for denoising was employed.After the output signal is denoised by the hybrid filter,the identification results obtained by employing the least squares identification method are still unsatisfactory due to instantaneous disturbances.Hence,an identification algorithm based on the hybrid filter and least absolute errors optimized by swarm optimization was proposed.The simulation study shows that the presented approach can overcome the influences of noise and disturbance simultaneously.

【基金】 国家自然科学基金资助项目(60774060);江苏省高校自然科学基金资助项目(06KJD520099)
  • 【文献出处】 上海交通大学学报 ,Journal of Shanghai Jiaotong University , 编辑部邮箱 ,2008年04期
  • 【分类号】TN911;TP301.6
  • 【被引频次】5
  • 【下载频次】123
节点文献中: 

本文链接的文献网络图示:

本文的引文网络