节点文献
计算机代数在有限群同构类计数中的设计与应用
Realization on the Computer Algebra about Enumeration Formulas for the Number of Isomorphism Classes of Finite Groups
【摘要】 文献[1]论证n阶群同构类的个数在1000以内的存在性。文章给出群同构类Balass计数公式运算的算法,用计算机代数语言Matlab加以实现,进而将群同构类的个数推广到3000。即设f(n)为n阶群同构类的个数,证明方程f(n)=k,(1≤k≤3000)解的存在性。
【Abstract】 It has been discussed in the Reference[1] that if 1≤k≤1000,algorithm of Balass’enumeration formulas for the number of isomorphism classes of groups is obtained in the paper,and is realized by Matlab program.There are infinitely many solutions for f(n)=k.Also k is extended,that is if,there are infinitely many solutions for f(n)=k.
【关键词】 有限群;
群的同构类的个数;
Balass公式;
【Key words】 finite group; number of isomorphism classes of groups; Balass’ formula;
【Key words】 finite group; number of isomorphism classes of groups; Balass’ formula;
【基金】 西南科技大学青年科技基金(07zx3129)
- 【文献出处】 四川理工学院学报(自然科学版) ,Journal of Sichuan University of Science & Engineering(Natural Science Edition) , 编辑部邮箱 ,2008年04期
- 【分类号】O152.1
- 【下载频次】101