节点文献

基于多表达式基因编程的复杂函数挖掘算法

Automatic Complex Function Discovery Based on Multi Expression Gene Programming

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 代术成唐常杰朱明放陈瑜乔少杰向勇李太勇

【Author】 DAI Shu-cheng1,TANG Chang-jie1,ZHU Ming-fang1,2,CHEN Yu1,QIAO Shao-jie1,XIANG Yong1,LI Tai-yong1(1.School of Computer Sci.,Sichuan Univ.,Chengdu 610065,China; 2.Dept.of Computer Sci.and Technol.,Shaanxi Univ.of Technol.,Hanzhong 723003,China)

【机构】 四川大学计算机学院陕西理工学院计算机系

【摘要】 传统的基因表达式编程(Gene Expression Programming)挖掘复杂函数时,存在进化辈数过大、无法跳出局部最优解等问题,提出了基于多表达式基因编程的遗传进化算法,提高GEP的全局寻优能力,提出了一种新的多表达式基因编程的遗传进化算法(Multi Expression Gene Programming,MEGP),建立了同一染色体内基因多层次编码、解码模型,理论上分析并比较了MEGP算法的表达空间复杂性,实现了多表达染色体遗传进化算法和染色体适应度评价算法。实验表明,在解决函数挖掘问题中,MEGP成功率是传统GEP的2~4倍。

【Abstract】 For complex function mining,traditional gene expression programming(GEP) need large number of evolutionary generations and would plunge into local optimum.To solve the problem,a novel evolutionary algorithm based on multiple expression genes programming(MEGP) was presented.The main contributions included: 1) a novel gene hierarchical representation model to encode solutions of complex function finding was provided;2)a chromosome architecture that allows of a genome with multiple candidate expressions was proposed;3)the express space of MEGP algorithm was theoretically analyzed and compared with traditional GEP;4)the MEGP algorithm and the chromosome fitness evaluation algorithm were implemented.Extensive experiments showed that the success rate of MEPG was 2~4 times of traditional GEP.

【基金】 国家自然科学基金资助项目(60773169);"十一五"国家科技支撑计划资助项目(2006BAI05A01)
  • 【文献出处】 四川大学学报(工程科学版) ,Journal of Sichuan University(Engineering Science Edition) , 编辑部邮箱 ,2008年06期
  • 【分类号】TP311.11
  • 【被引频次】14
  • 【下载频次】303
节点文献中: 

本文链接的文献网络图示:

本文的引文网络