节点文献
在旋转磁场中海森伯自旋链的几何相位
Geometric phase of a Heisenberg-chain in a rotating magnetic field
【摘要】 用代数动力学方法,研究旋转磁场中海森伯自旋链的几何相位.选用一个有部分各向异性海森伯耦合的3自旋12粒子环链系统.发现系统的哈密顿量具有su(2)代数结构.通过选择一个最佳规范变换,运用代数动力学方法得到系统的精确解.计算了系统的非绝热和绝热几何相位.把部分各向异性海森伯耦合推广到一般情况下的海森伯耦合,发现:在绝热近似下,海森伯耦合强度不影响系统的几何相位.
【Abstract】 The algebriaic dynamics is applied to investigate the geometric phase of a Heisenberg-chain in a rotating magnetic field.It is a su(2) algebraically symmetric 3-spin12 system with partially anisotropic coupling.The exact analytical solution of the time dependent Schrdinger equation and the geometric phases of this system are obtained in terms of gauge transformation and algebriaic dynamics.The partially anisotropic coupling is then extended to a more general coupling and the adiabatic geometric phases of the extended system are calculated.We find that the coupling strengths have no impact on the adiabatic geometric phases of the system.
【Key words】 3particle Heisenberg-chain; geometric phase; algebriaic dynamics;
- 【文献出处】 四川大学学报(自然科学版) ,Journal of Sichuan University(Natural Science Edition) , 编辑部邮箱 ,2008年04期
- 【分类号】O413.1
- 【被引频次】4
- 【下载频次】83