节点文献

分担多项式的亚纯函数(英文)

Meromorphic functions that share polynomials

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 仇惠玲徐焱

【Author】 Qiu Hui-Ling1,Xu Yan2(1.Department of Applied Mathematics,Nanjing Audit University,Nanjing 210029,China;2.School of Mathematics and Computer Science,Nanjing Normal University,Nanjing 210097,China)

【机构】 南京审计学院应用数学系南京师范大学数学与计算机科学学院

【摘要】 在本文中,亚纯函数是指在整个复平面上的亚纯函数.本文是利用复分析的值分布理论来研究亚纯函数的唯一性.设f(z)和g(z)是两个亚纯函数,当fn(z)f′(z),gn(z)g′(z)分担1或者z CM时,前人给出了下面的定理:定理A设f(z)和g(z)是两个非常数亚纯函数,n≥11是一个正整数,如果fn(z)f′(z),gn(z)g′(z)分担1CM,则f(z)=c1ecz,g(z)=c2e-cz,这里c1,c2和c是3个常数且满足(c1c2)n+1c2≡-1;或者f(z)≡tan(z)其中t是一个常数满足tn+1=1.定理B设f(z)和g(z)是两个非常数亚纯函数(整函数),n≥11(n≥6)是一个正整数,如果fn(z)f′(z),gn(z)g′(z)分担z CM,则f(z)=c1ecz2,g(z)=c2e-cz2,这里c1,c2和c是3个常数且满足4(c1c2)n+1c2≡-1;或者f(z)≡tan(z)其中t是一个常数满足tn+1=1.在本文中,我们推广了上述定理,证明了下面的结论:设p(z)为n1次多项式,f(z)和g(z)是两个超越亚纯函数,n≥max{11,2n1+2}是一个正整数,如果fn(z)f′(z),gn(z)g′(z)分担多项式p(z)CM,则f(z)=c1e∫cp(z)dz,g(z)=c2e-∫cp(z)dz,这里c1,c2和c是3个常数且满足(c1c2)n+1c2≡-1;或者f(z)≡tan(z)其中t是一个常数满足tn+1=1.

【Abstract】 In this paper,by a meromorphic function we always mean a function which is meromorphic in the whole complex plane C.We use the theory of value distribution and study the uniqueness of meromorphic functions.Let f(z) be meromorphic function.We use the standard notations in Nevanlinna’s value distribution theory of meromorphic functions such as T(r,f),N(r,f),and m(r,f).The notation S(r,f) is defined to any quantity satisfying S(r,f)=o(T(r,f)) as r→∞,possibly outside of a set of rof finite linear measure.A meromorphic function a(z) is called a small function with respect to f(z) provided that T(r,a)=S(r,f).Let f(z) and g(z) be two meromorphic functions,and let a(z) be a small function with respect to f(z) and g(z).We say that two meromorphic functions f(z) and g(z) share a(z) IM(ignoring multiplicities) when f(z)-a(z) and g(z)-a(z) have the same zeros.If f(z)-a(z) and g(z)-a(z) have the same zeros with the same multiplicities,then we say that f(z) and g(z) share a(z) CM(counting multiplicities).Let f(z) and g(z) be two meromorphic functions.If fn(z)f′(z) and gn(z)g′(z) share 1 or z CM,previous workers have obtained the following theorems:Theorem A Let f(z) and g(z) be two nonconstant meromorphic functions and n≥11 a positive integer.If fn(z)f′(z) and gn(z)g′(z) share 1 CM,then either f(z)=c1ecz,g(z)=c2e-cz where c1,c2 and c are three constants satisfying(c1c2)n+1c2=-1,or f(z)≡tan(z) for a constant t such that tn+1=1.Theorem B Let f(z) and g(z) be two nonconstant meromorphic(entire) functions and n≥11(n≥6) a positive integer.If fn(z)f′(z) and gn(z)g′(z) share z CM,then either f(z)=c1ecz2,g(z)=c2e-cz2,where c1,c2 and c are three constants satisfying 4(c1c2)n+1c2=-1,or f(z)≡tan(z) for a constant t such that tn+1=1.In this paper,we will extend the above results as follows.Let f(z) and g(z) be two transcendental meromorphic functions,p(z) a polynomial of degree n1,and n≥max{11,2n1+2} a positive integer.If fn(z)f′(z) and gn(z)g′(z) share p(z) CM,then either f(z)=c1ec∫p(z)dz,g(z)=c2e-c∫p(z)dz,where c1,c2 and c are three constants satisfying(c1c2)n+1c2=-1,or f(z)≡tan(z) for a constant t such that tn+1=1.

【关键词】 亚纯函数多项式唯一性
【Key words】 meromorphic functionentire functionpolynomialconstant
【基金】 National Natural Science Foundation of China(10771076)
  • 【文献出处】 南京大学学报(自然科学版) ,Journal of Nanjing University(Natural Sciences) , 编辑部邮箱 ,2008年04期
  • 【分类号】O174.52
  • 【被引频次】4
  • 【下载频次】105
节点文献中: 

本文链接的文献网络图示:

本文的引文网络