节点文献

基于M带小波包的GPS数据序列误差分析与特征信息提取

Analysis and feature extraction of GPS data sequence based on M-band wavelet packet

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 曲国庆党亚民章传银苏晓庆

【Author】 QU Guo-qing1,2,DANG Ya-min3,ZHANG Chuan-yin3,SU Xiao-qing2(1.Geomatics College,Shandong University of Science and Technology,Qingdao 266510,China;2.School of Architecture Engineering,Shandong University of Technology,Zibo 255049,China;3.Institute of Geodesy and Geodynamics,Chinese Academy of Surveying and Mapping,Beijing 100039,China)

【机构】 山东科技大学测绘科学与工程学院山东理工大学建筑工程学院中国测绘科学研究院大地测量与地球动力学研究所

【摘要】 针对M带小波包在分解过程中存在频率混淆现象,采取节点重排序、单子带重构改进算法等措施,减弱或消除频率混淆现象.将改进的M带小波包分析算法应用于高精度GPS数据序列,分析其误差特性,提取年周期、半年周期、月周期、半月周期等特征信息.通过小波包变换将GPS数据序列噪声和特征信息分离后,进一步提取了误差周期项和特征信息周期项.最后通过实验验证了该方法的有效性.

【Abstract】 Contraposing the frequency aliasing existing in the algorithm of M-band wavelet packet,measures such as reordering nodes,improved single sub-band reconstruction algorithm were taken to weaken or even eliminate the aliasing.The improved algorithm was used to analyze high-precision GPS data series to obtain the feature of GPS errors,and the feature information with annual cycle,semi-annual cycle,monthly cycle and semi-monthly cycle was extracted based on it.After departing the noise and feature information with wavelet packet transform,error cycle items and feature information cycle items were further extracted separately.The experiment verified the effectiveness of the method.

【关键词】 M带小波包GPS特征信息周期项
【Key words】 M-band wavelet packetGPSfeature informationcycle item
【基金】 山东省自然科学基金资助项目(2004XZ31);中科院百人计划资助项目
  • 【文献出处】 煤炭学报 ,Journal of China Coal Society , 编辑部邮箱 ,2008年11期
  • 【分类号】P228.4
  • 【被引频次】12
  • 【下载频次】187
节点文献中: 

本文链接的文献网络图示:

本文的引文网络