节点文献

多车场车辆路径问题的新型聚类蚁群算法

Study on A Novel Clustering Ant Colony Algorithms for Multi-depots Vehicle Routing Problem

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 陈美军张志胜陈春咏史金飞

【Author】 CHEN Mei-jun,ZHANG Zhi-sheng,CHEN Chun-yong,SHI Jin-fei (Southeast University, Jiangsu Nanjing, 211189, China)

【机构】 东南大学机械工程学院东南大学机械工程学院 江苏南京211189江苏南京211189

【摘要】 在对多车场带时间窗的车辆路径问题进行详细阐述的基础上,以车辆运输总费用最少为目标函数,建立了问题的数学模型。提出了先采用聚类蚁群算法将多车场带时间窗的车辆路径问题分解为若干个单车场车辆路径问题,然后对各单车场问题应用改进蚁群算法进行优化的求解思路。最后通过一个实例将这种新型聚类蚁群算法与就近分配禁忌搜索算法和K-均值算法的优化能力进行了对比。试验结果表明,该算法对优化多车场带时间窗的车辆路径问题的求解结果是相当令人满意的。

【Abstract】 It takes the vehicles transport time costs as the target function on the basis of expounding detail to the multi-depots vehicle routing problem with time windows, builds the mathematic model of the problem. It divides a multi-depots vehicle routing problem with time windows(MDVRPTW) into several single-depot vehicle routing problem by using the novel clustering ant colony algorithms (NCACA) first, then applies the improved ant colony algorithms to optimize the single-depot vehicle routing. At last, it presents a case study which contrasts the novel clustering ant colony algorithms (NCACA) to nearest assigning tabu-search algorithms and k-means algorithms in the optimizing ability. The experiment results show that the method in the above-mentioned is very satisfactory.

【基金】 国家自然科学基金资助项目(70272046)
  • 【文献出处】 中国制造业信息化 ,Manufacture Information Engineering of China , 编辑部邮箱 ,2008年11期
  • 【分类号】TP301.6
  • 【被引频次】27
  • 【下载频次】515
节点文献中: 

本文链接的文献网络图示:

本文的引文网络